lunes, 29 de septiembre de 2014

Esquema con movimiento: Transporte a través de la membrana



https://drive.google.com/file/d/0B98UPLyRJ-WvY2I4WXg0TWU1UEk/view?usp=sharing 



 Conjunto de mecanismos que regulan el paso de solutos, como iones y pequeñas moléculas, a través demembranas plasmáticas, esto es, bicapas lipídicas que poseen proteínas embebidas en ellas. Dicha propiedad se debe a la selectividad de membrana, una característica de las membranas celulares que las faculta como agentes de separación específica de sustancias de distinta índole química; es decir, la posibilidad de permitir la permeabilidad de ciertas sustancias pero no de otras.1

Los movimientos de casi todos los solutos a través de la membrana están mediados por proteínas transportadoras de membrana, más o menos especializadas en el transporte de moléculas concretas. Puesto que la diversidad y fisiología de las distintas células de un organismo está relacionada en buena medida con su capacidad de captar unos u otros elementos externos, se postula que debe existir un acervo de proteínas transportadoras específico para cada tipo celular y para cada momento fisiológico determinado; dicha expresión diferencial se encuentra regulada mediante: la transcripción diferencial de los genes codificantes para esas proteínas y su traducción, es decir, mediante los mecanismos genético-moleculares, pero también a nivel de la biología celular: dichas proteínas pueden requerir de activación mediada por rutas de señalización celular, activación a nivel bioquímico o, incluso, de localización en vesículas del citoplasma.

viernes, 26 de septiembre de 2014

Mapa híbrido: Potencial de membrana y su conducción




https://drive.google.com/file/d/0ByfoNLlP1_viYnJzR0FfVXZsbms/view?usp=sharing 



Un potencial de acción, también llamado impulso eléctrico, es una onda de descarga eléctrica que viaja a lo largo de la membrana celular modificando su distribución de carga eléctrica. Los potenciales de salvetta se utilizan en el cuerpo para llevar información entre unos tejidos y otros, lo que hace que sean una característica microscópica esencial para la vida de los seres vivos. Pueden generarse por diversos tipos de células corporales, pero las más activas en su uso son las células del sistema nervioso para enviar mensajes entre células nerviosas (sinapsis) o desde células nerviosas a otros tejidos corporales, como el músculo o las glándulas.

miércoles, 24 de septiembre de 2014

Mapa híbrido sobre potencial de membrana







https://drive.google.com/file/d/0ByfoNLlP1_vib200aWo1VjFuejA/view?usp=sharing


Potencial de membrana

Es la diferencia de voltaje eléctrico a ambos lados de la membrana, producto de la distribución asimétrica de iones.
 
Como resultado de la permeabilidad selectiva de la membrana plasmática, la presencia de moléculas con carga negativa que no se difunden dentro de la célula y la acción de varias unidades de bomba sodio-potasio; hay una distribución desigual de cargas a través de la membrana. Como consecuencia, el interior de la célula tiene mayor cantidad de cargas negativas en comparación con el exterior. Esta diferencia de carga, o diferencia de potencial, se conoce como el potencial de membrana.

miércoles, 10 de septiembre de 2014

Esquema con movimiento sobre síntesis de proteínas





Transporte activo

https://drive.google.com/file/d/0ByfoNLlP1_viOE14bVJZaW5ERmM/view?usp=sharing 



El transporte activo es un mecanismo celular por medio del cual algunas moléculas atraviesan la membrana plasmatica contra un gradiente de concentración, es decir, desde una zona de baja concentración a otra de alta concentración con el consecuente gasto de energía. Los ejemplos típicos son la bomba de sodio-potasio, la bomba de calcio o simplemente el transporte de glucosa.
En la mayor parte de los casos este transporte activo se realiza a expensas de un gradiente de H+ (potencial electro-químico de protones) previamente creado a ambos lados de la membrana, por procesos de respiración y fotosíntesis; por hidrólisis de ATP mediante ATP hidrolasas de membrana. El transporte activo varía la concentración intracelular y ello da lugar un nuevo movimiento osmótico de re-balanceo por hidratación. Los sistemas de transporte activo son los más abundantes entre las bacterias, y se han seleccionado evolutivamente debido a que en sus medios naturales la mayoría de los procariontes se encuentran de forma permanente o transitoria con una baja concentración de nutrientes.
El transporte activo de moléculas a través de la membrana celular se realiza en dirección ascendente o en contra de un gradiente de concentración (Gradiente químico) o en contra un gradiente eléctrico de presión (gradiente electro-químico), es decir, es el paso de sustancias desde un medio poco concentrado a un medio muy concentrado. Para desplazar estas sustancias contra corriente es necesario el aporte de energía procedente del ATP. Las proteínas portadoras del transporte activo poseen actividad ATPasa, que significa que pueden escindir el ATP (Adenosin Tri Fosfato) para formar ADP (dos Fosfatos) o AMP (un Fosfato) con liberación de energía de los enlaces fosfato de alta energía. 

martes, 9 de septiembre de 2014

Mapa conceptual difusión simple y facilitada




DIFUSIÓN SIMPLE
Difusión simple se intercambian sustancias disueltas de muy bajo peso molecular, cuanto menor tamaño molecular y mayor carácter hidrófobo, mejor difunde una sustancia a través de la membrana. Es la difusión de agua, gases disueltos o moléculas liposolubles por la capa doble de fosfolípidos de la membrana citoplasmática.
 Es el movimiento de las moléculas en el fluido, desde las regiones de alta concentración hasta las de menor concentración, como es el caso del agua, gases disueltos (oxigeno, dióxido de carbono) y moléculas liposolubles (alcohol etílico y la vitamina A) que cruzan la membrana con facilidad.
Un ejemplo de lo anterior sería el de una gota de colorante en un vaso de agua. Con el tiempo parecerá que la gota se más grande y palidece, y al pasar más tiempo todo al vaso de agua se tiñe en forma uniforme pero manteniéndose pálido.

DIFUSIÓN FACILITADA
Por difusión mediada o facilitada atraviesan la membrana sustancias que requieren la mediación de proteínas de membrana que las reconocen específicamente y permiten su paso sin que lleguen a tomar contacto directo con los lípidos hidrofóbicos. Se puede transportar un soluto específico desde el interior de la célula al exterior o viceversa, pero el movimiento neto es siempre desde una región de mayor concentración de soluto a una de menor concentración. Las proteínas de canal y las proteínas transportadoras facilitan la difusión por diferentes mecanismos.
v  Las proteínas implicadas en la difusión mediada son largas cadenas polipeptídicas y pueden ser de dos clases, proteínas transportadoras y proteínas de canal.
v  La difusión mediada por permeasas implica la unión específica de la sustancia a la proteína en una cara de la membrana.
v  La difusión mediada por proteínas de canal éstas no se unen a la sustancia. Permiten principalmente el paso de iones a mucha mayor velocidad que las permeasas.
La apertura y cierre de estos canales puede estar regulada de varias formas:
v  Regulación por unión con ligandos, sustancias como mensajeros químicos extracelulares (hormonas y neurotransmisores), o intracelulares (iones, nucleótidos).
v  Regulación por cambios de voltaje, es decir, al modificarse la diferencia de potencial que normalmente existe en la membrana, que recibe el nombre de potencial de membrana. Un cambio de polaridad en un punto de la membrana modifica la estructura del canal y se abre.

miércoles, 3 de septiembre de 2014

Mapa Conceptual Síntesis de Proteínas

Se conoce como síntesis de proteínas al proceso por el cual se componen nuevas proteínas a partir de los veinte aminoácidos esenciales. En éste proceso, se transcribe el ADN en ARN. La síntesis de proteínas se realiza en los ribosomas situados en el citoplasma celular.
En el proceso de síntesis, los aminoácidos son transportados por ARN de transferencia correspondiente para cada aminoácido hasta el ARN mensajero donde se unen en la posición adecuada para formar las nuevas proteínas.
Al finalizar la síntesis de una proteína, se libera el ARN mensajero y puede volver a ser leído, incluso antes de que la síntesis de una proteína termine, ya puede comenzar la siguiente, por lo cual, el mismo ARN mensajero puede utilizarse por varios ribosomas al mismo tiempo.  https://docs.google.com/file/d/0ByfoNLlP1_viTWxyWk1vTklKZVE/edit?usp=docslist_api